January 2008

4768	Statistics	3

1		1	i de la constanción d	1
Q1 (a)	$\mathbf{P}(T>t)=\frac{k}{t^2}, \qquad t\ge 1,$			
(i)	F(t) = P(T < t) = 1 - P(T > t)	M1	Use of 1 – P().	
~ /	$\mathbf{E}(\mathbf{x}) = \mathbf{k}$			
	$\therefore \mathbf{F}(t) = 1 - \frac{1}{t^2}$			
	F(1) = 0	M1		
	$\therefore 1 - \frac{k}{k^2} = 0$			
	$\therefore k = 1$	A1	Beware: answer given.	3
(ii)	d F(t)			
``	$f(t) = -\frac{t}{dt}$	IVIT	Attempt to differentiate c s cdf.	
	2			
	$=\frac{1}{t^3}$	A1	(For $t \ge 1$, but condone absence	2
	·		of this.) Ft c's cat provided	
/:::)			Correct form of integral for the	
(111)	$\mu = \int_{1}^{\infty} t f(t) dt = \int_{1}^{\infty} \frac{2}{t^2} dt$		mean with correct limits. Et c's	
			ndf	
		A1	Correctly integrated. Ft c's pdf.	
	$=\left \frac{-2}{2}\right $			
	$\begin{bmatrix} t \end{bmatrix}_1$			
	= 0 - (-2) = 2	A1	Correct use of limits leading to	3
			correct value. Ft c's pdf provided	
<i>(</i> 1.)			answer sensible.	
(b)	$H_0: m = 5.4$	BJ	Both hypotheses. Hypotheses in	
	Π_1 : $\Pi \neq 5.4$	D1	"nonulation"	
	the task	ы	For adequate verbal definition	
	Times – 5.4 Rank of			
	diff			
	6.4 1.0 8			
	5.9 0.5 5			
	5.0 -0.4 4			
	6.2 0.8 7			
	6.8 1.4 10	M1	for subtracting 5.4.	
	6.0 0.6 6	M1	for ranks	
	5.2 -0.2 2		FT if ranks wrong	
	6.5 1.1 9	//1		
	5.7 0.3 3			
	3.3 -0.1 I	D1		
	$vv_{-} = 1 + 2 + 4 = 1 (UI VV_{+} = 3 + 5 + 6 + 7 + 8 + 9 + 10 - 18)$			
	3+3+0+7+0+3+10 = 48) Refer to tables of Wilcovon single sample		No ft from here if wrong	
	(paired) statistic for $n = 10$			
	Lower (or upper if 48 used) double-tailed	A1	i.e. a 2-tail test. No ft from here if	
	5% point is 8 (or 47 if 48 used).		wrong.	
	Result is significant.	A1	ft only c's test statistic.	
	Seems that the median time is no longer as	A1	ft only c's test statistic.	10
	previously thought.			

January 2008

Q2	$X \sim N(260, \sigma = 24)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.		
(i)	$P(X < 300) = P(Z < \frac{300 - 260}{24} = 1.6667)$ = 0.9522	M1 A1 A1	For standardising. Award once, here or elsewhere.	3	
(ii)	$Y \sim N(260 \times 0.6 = 156, 24^2 \times 0.6^2 = 207.36$ $P(Y > 175) = P(Z > \frac{175 - 156}{14.4} = 1.3194)$	B1 B1	Mean. Variance. Accept sd (= 14.4).		
	= 1 - 0.9063 = 0.0937	A1	c.a.o.	3	
(iii)	$Y_1 + Y_2 + Y_3 + Y_4 \sim N(624, 829.44)$ 600 - 624	B1 B1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii).		
	$P(\text{this} < 600) = P(Z < \frac{1}{28.8}) = -0.8333)$ $= 1 - 0.7976 = 0.2024$	A1	c.a.o.	3	
(iv)	Require <i>w</i> such that	M1	Formulation of requirement.		
	$0.975 = P(above > w) = P\left(Z > \frac{w - 624}{28.8}\right)$	B1	- 1.96		
	$∴ w - 624 = 28.8 \times -1.96 \Rightarrow w = 567.5(52)$	A1	Ft parameters of (iii).	3	
(v)	$On \sim N(150, \sigma = 18)$ $X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080,$ $P(\text{this} > 1000) = P(Z > \frac{1000 - 1080}{48.744} = -1.6412)$	B1 B1	Mean. Variance. Accept sd (= 48.744).		
	= 0.9496	A1	с.а.о.	3	
(vi)	Given $\bar{x} = 252.4 s_{n-1} = 24.6$				
	Cl is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$	M1	Correct use of 252.4 and $24.6/\sqrt{100}$.		
	= 252.4 ± 6.33(6) = (246.0(63), 258.7(36))	A1	c.a.o. Must be expressed as an interval.	3	
				18	

Q3				
(i)	A <i>t</i> test should be used because			
.,	the sample is small,	E1		
	the population variance is unknown,	E1		
	the background population is Normal	E1		3
(ii)	$H_0: \mu = 380$	B1	Both hypotheses. Hypotheses in	
	$H_1: \mu < 380$		words only must include	
			"population".	
	where μ is the mean temperature in the chamber.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
	$\overline{x} = 373.825$ $s_{n-1} = 9.368$	B1	$s_n = 8.969$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{373.825 - 380}{\frac{9.368}{\sqrt{12}}}$	M1	Allow c's \bar{x} and/or s _{<i>n</i>-1} . Allow alternative: 380 + (c's – 1.796) × $\frac{9.368}{\sqrt{12}}$ (= 375.143) for	
			subsequent comparison with \overline{x} . (Or \overline{x} – (c's –1.796) × $\frac{9\cdot368}{\sqrt{12}}$	
	= -2.283(359).	A1	(= 378.681) for comparison with 380.) c.a.o. but ft from here in any case if wrong. Use of $380 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_{11} . Single-tailed 5% point is -1.796 .	M1 A1	No ft from here if wrong. Must be minus 1.796 unless absolute values are being compared. No ft from here if	
	Significant	Δ1	ft only c's test statistic	
	Seems mean temperature in the chamber	A1	ft only c's test statistic	9
	has fallen.			•
(iii)	CI is given by			
	373.825 ±	M1		
	2.201	B1		
	× <u>9.368</u>	M1		
	$\sqrt{12}$			
	= 373.825 ± 5.952= (367.87(3), 379.77(7))	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	4
(iv)	Advantage: greater certainty.	E1	Or equivalents.	
	Disadvantage: less precision.	E1		2 18

Mark Scheme

Q4							
(a) (i)	$\overline{x} = \frac{1125}{500} = 2.25$ For binomial E(X) = $n \times p$ $\therefore \hat{p} = \frac{2.25}{5} = 0.45$		B1 M1	I 1 Use of mean of binomial distribution. May be implicit.			3
/::\	5			Dewa		given.	5
(11)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54 68.455 68.45	125 137 137 M1 A1	5 63 16 7.827 56.384 9.226 7.85 56.35 9.25 Calculation of expected frequencies. All correct. Or using tables.			
	$X^{2} = 1.8571 + 0.4836 + 1.2404 + 1.1938 + 0.7763 + 4.9737$ $= 10.52(49)$			Or using tables: 1.8657 + 0.4828 + 1.2396 + 1.1978 + 0.7848 + 4.9257 c.a.o. Or using tables: 10.49(64)			
	Refer to χ_4^2 . Upper 5% point is 9.488. Significant. Suggests binomial model does not fit.			Allow correct df (= cells – 2) from wrongly grouped or ungrouped table, and FT. Otherwise, no FT if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.			
	The model appears to overestimate in the middle and to underestimate at the tails. The biggest discrepancy is at $X = 5$.			Accept also any other sensible comment e.g. at 2.5% significance, the result would NOT have been significant.			
	A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that p will be the same for all families.			(E2, 1, 0) Any sensible comment which addresses independence and constant <i>p</i> .			12
(b)	She should try to choose a simple random sample which would involve establishing a sampling frame and using some form of random number generator.		E1 E1 E1	Allow sensible discussion of practical limitations of choosing a random sample. Allow other sensible suggestions. E.g systematic sample - choosing every tenth family; stratified sample - by the number of girls in a family.		3	