4768
 Statistics 3

Q1 (a)	$\mathrm{P}(T>t)=\frac{k}{t^{2}}, \quad t \geq 1$,			
(i)	$\begin{aligned} & \mathrm{F}(t)=\mathrm{P}(T<t)=1-\mathrm{P}(T>t) \\ & \therefore \mathrm{F}(t)=1-\frac{k}{t^{2}} \\ & \mathrm{~F}(1)=0 \\ & \therefore 1-\frac{k}{1^{2}}=0 \\ & \therefore k=1 \end{aligned}$	M1 M1 A1	Use of $1-P(\ldots)$. Beware: answer given.	3
(ii)	$\begin{aligned} \mathrm{f}(t) & =\frac{\mathrm{d} \mathrm{~F}(t)}{\mathrm{d} t} \\ & =\frac{2}{t^{3}} \end{aligned}$	M1 A1	Attempt to differentiate c's cdf. (For $t \geq 1$, but condone absence of this.) Ft c's cdf provided answer sensible.	2
(iii)	$\begin{aligned} \mu & =\int_{1}^{\infty} \mathrm{ff}(t) \mathrm{d} t=\int_{1}^{\infty} \frac{2}{t^{2}} \mathrm{~d} t \\ & =\left[\frac{-2}{t}\right]_{1}^{\infty} \\ & =0-(-2)=2 \end{aligned}$	M1	Correct form of integral for the mean, with correct limits. Ft c's pdf. Correctly integrated. Ft c's pdf. Correct use of limits leading to correct value. Ft c's pdf provided answer sensible.	3
(b)	$\mathrm{H}_{0}: m=5.4$ $\mathrm{H}_{1}: m \neq 5.4$ where m is the population median time for the task. $W_{-}=1+2+4=7\left(\text { or } W_{+}=\right.$ $3+5+6+7+8+9+10=48)$ Refer to tables of Wilcoxon single sample (/paired) statistic for $n=10$. Lower (or upper if 48 used) double-tailed 5% point is 8 (or 47 if 48 used). Result is significant. Seems that the median time is no longer as previously thought.	B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. for subtracting 5.4. for ranks. FT if ranks wrong. No ft from here if wrong. i.e. a 2-tail test. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	10

Q2	$x \sim \mathrm{~N}(260, \sigma=24)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} & \mathrm{P}(X<300)=\mathrm{P}\left(\mathrm{Z}<\frac{300-260}{24}=1.6667\right) \\ & =0.9522 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & Y \sim \mathrm{~N}\left(260 \times 0.6=\begin{array}{l} 156, \\ 24^{2} \times 0.6^{2}=207.36 \end{array}\right. \\ & P(Y>175)=P\left(Z>\frac{175-156}{14.4}=1.3194\right) \\ & =1-0.9063=0.0937 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 14.4). c.a.o.	3
(iii)	$Y_{1}+Y_{2}+Y_{3}+Y_{4} \sim N(624,$ 829.44) $\begin{aligned} & \mathrm{P}(\text { this }<600)=\mathrm{P}\left(\mathrm{Z}<\frac{600-624}{28.8}=-0.8333\right) \\ & =1-0.7976=0.2024 \end{aligned}$	B1 B1 A1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii). c.a.o.	3
(iv)	Require w such that $\begin{aligned} & 0.975=\mathrm{P}(\text { above }>w)=\mathrm{P}\left(Z>\frac{w-624}{28.8}\right) \\ & =\mathrm{P}(Z>-1.96) \\ & \therefore w-624=28.8 \times-1.96 \Rightarrow w=567.5(52) \end{aligned}$	M1 B1 A1	Formulation of requirement. -1.96 Ft parameters of (iii).	3
(v)	$\begin{aligned} & \mathrm{On} \sim \mathrm{~N}(150, \sigma=18) \\ & X_{1}+X_{2}+X_{3}+\mathrm{On}_{1}+\mathrm{On} 2 \sim \mathrm{~N}(1080, \\ & \mathrm{P}(\text { this }>1000)=\mathrm{P}\left(Z>\frac{1000-1080}{48.744}=-1.6412\right) \\ & =0.9496 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 48.744). c.a.o.	3
(vi)	Given $\quad \bar{x}=252.4 \quad s_{n-1}=24.6$ Cl is given by $\quad 252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ $=252.4 \pm 6.33(6)=(246.0(63), 258.7(36))$	M1 B1 A1	Correct use of 252.4 and 24.6/ $\sqrt{100}$. For 2.576. c.a.o. Must be expressed as an interval.	3
				18

Q3				
(i)	A t test should be used because the sample is small, the population variance is unknown, the background population is Normal	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$		3
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=380 \\ & \mathrm{H}_{1}: \mu<380 \end{aligned}$ where μ is the mean temperature in the chamber.	B1 B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ ". or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	
	$\bar{x}=373.825 \quad s_{n-1}=9.368$	B1	$s_{n}=8.969$ but do NOT allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{373.825-380}{\frac{9.368}{\sqrt{ } 12}}$	M1	Allow c's \bar{x} and/or s_{n-1}. Allow alternative: 380 + (c's - $1.796) \times \frac{9.368}{\sqrt{12}}(=375.143)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-\left(c^{\prime} s-1.796\right) \times \frac{9.368}{\sqrt{12}}$ (= 378.681) for comparison with 380.)	
	= -2.283(359).	A1	c.a.o. but ft from here in any case if wrong. Use of $380-\bar{x}$ scores M1A0, but ft.	
	Refer to t_{11}. Single-tailed 5% point is -1.796 .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	No ft from here if wrong. Must be minus 1.796 unless absolute values are being compared. No ft from here if wrong.	
	Significant. Seems mean temperature in the chamber has fallen.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	ft only c's test statistic. ft only c's test statistic.	9
(iii)	Cl is given by			
	$2 \cdot 201$	B1		
	$\times \frac{9.368}{\sqrt{12}}$	M1		
	$=373.825 \pm 5.952=(367.87(3), 379.77(7))$	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	4
(iv)	Advantage: greater certainty. Disadvantage: less precision.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Or equivalents.	2 18

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Q4 \& \& \& \& \& \& \& \& \& \\
\hline \[
\begin{aligned}
\& \text { (a) } \\
\& \text { (i) }
\end{aligned}
\] \& \multicolumn{4}{|l|}{\begin{tabular}{l}
\[
\bar{x}=\frac{1125}{500}=2.25
\] \\
For binomial \(\mathrm{E}(X)=n \times p\)
\[
\therefore \hat{p}=\frac{2.25}{5}=0.45
\]
\end{tabular}} \& B1
M1

A1 \& \& f mean of ution. M e: answ \& | nomial be implicit. |
| :--- |
| given. | \& 3

\hline (i) \& \multicolumn{4}{|l|}{| $\begin{aligned} x^{2} & =1.8571+0.4836+1.2404+1.1938+ \\ & 0.7763+4.9737 \\ & =10.52(49) \end{aligned}$ |
| :--- |
| Refer to χ_{4}^{2}. |
| Upper 5\% point is 9.488. |
| Significant. |
| Suggests binomial model does not fit. |
| The model appears to overestimate in the middle and to underestimate at the tails. The biggest discrepancy is at $X=5$. |
| A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that p will be the same for all families. |} \& 125

13
13
M1
A1
M1

A1
M1

A1
A1
A1
E1
E1

E2 \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{| Calculation of expected frequencies. |
| :--- |
| All correct. |
| Or using tables: $1.8657+0.4828+1.2396+$ |
| $1.1978+0.7848+4.9257$ |
| c.a.o. Or using tables: 10.49(64) |
| Allow correct df (= cells - 2) from wrongly grouped or ungrouped table, and FT. Otherwise, no FT if wrong. |
| No ft from here if wrong. |
| ft only c's test statistic. |
| ft only c's test statistic. |
| Accept also any other sensible comment e.g. at 2.5% significance, the result would NOT have been significant. |
| (E2, 1, 0) Any sensible comment which addresses independence and constant p. |
| Allow sensible discussion of practical limitations of choosing a random sample. |
| Allow other sensible suggestions. E.g systematic sample - choosing every tenth family; stratified sample - by the number of girls in a family. |}} \& 12

\hline (b) \& \multicolumn{4}{|l|}{She should try to choose a simple random sample which would involve establishing a sampling frame and using some form of random number generator.} \& $$
\begin{aligned}
& \text { E1 } \\
& \text { E1 } \\
& \text { E1 }
\end{aligned}
$$ \& \& \& \& 3

\hline \& \& \& \& \& \& \& \& \& 18

\hline
\end{tabular}

